46 research outputs found

    Generalization of a theorem of Gonchar

    Full text link
    Let X,YX, Y be two complex manifolds, let D⊂X,D\subset X, G⊂Y G\subset Y be two nonempty open sets, let AA (resp. BB) be an open subset of ∂D\partial D (resp. ∂G\partial G), and let WW be the 2-fold cross ((D∪A)×B)∪(A×(B∪G)).((D\cup A)\times B)\cup (A\times(B\cup G)). Under a geometric condition on the boundary sets AA and B,B, we show that every function locally bounded, separately continuous on W,W, continuous on A×B,A\times B, and separately holomorphic on (A×G)∪(D×B)(A\times G) \cup (D\times B) "extends" to a function continuous on a "domain of holomorphy" W^\hat{W} and holomorphic on the interior of W^.\hat{W}.Comment: 14 pages, to appear in Arkiv for Matemati

    The M16 molecular complex under the influence of NGC6611. Herschel's perspective of the heating effect on the Eagle Nebula

    Get PDF
    We present Herschel images from the HOBYS key program of the Eagle Nebula (M16) in the far-infrared and sub-millimetre, using the PACS and SPIRE cameras at 70{\mu}m, 160{\mu}m, 250{\mu}m, 350{\mu}m, 500{\mu}m. M16, home to the Pillars of Creation, is largely under the influence of the nearby NGC6611 high-mass star cluster. The Herschel images reveal a clear dust temperature gradient running away from the centre of the cavity carved by the OB cluster. We investigate the heating effect of NGC6611 on the entire M16 star-forming complex seen by Herschel including the diffuse cloud environment and the dense filamentary structures identified in this region. In addition, we interpret the three-dimensional geometry of M16 with respect to the nebula, its surrounding environment, and the NGC6611 cavity. The dust temperature and column density maps reveal a prominent eastern filament running north-south and away from the high-mass star-forming central region and the NGC6611 cluster, as well as a northern filament which extends around and away from the cluster. The dust temperature in each of these filaments decreases with increasing distance from the NGC6611 cluster, indicating a heating penetration depth of \sim 10 pc in each direction in 3 - 6 \times 10^{22} cm-2 column density filaments. We show that in high-mass star-forming regions OB clusters impact the temperature of future star-forming sites, modifying the initial conditions for collapse and effecting the evolutionary criteria of protostars developed from spectral energy distributions. Possible scenarios for the origin of the morphology seen in this region are discussed, including a western equivalent to the eastern filament, which was destroyed by the creation of the OB cluster and its subsequent winds and radiation.Comment: 12 pages, including 3 appendix, 9 figures, accepted by A&

    A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

    Full text link
    High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic-ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period since all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model

    Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data

    Get PDF
    We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ@100TeVνμ+νˉμ=1.44−0.26+0.25×10−18 GeV−1cm−2s−1sr−1{\phi }_{@100\mathrm{TeV}}^{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}={1.44}_{-0.26}^{+0.25}\times {10}^{-18}\,{\mathrm{GeV}}^{-1}{\mathrm{cm}}^{-2}{{\rm{s}}}^{-1}{\mathrm{sr}}^{-1} and a spectral index γSPL=2.37−0.09+0.09{\gamma }_{\mathrm{SPL}}={2.37}_{-0.09}^{+0.09}, constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level

    Performance of the D-Egg Optical Sensor for the IceCube Upgrade

    Get PDF
    New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high QE photomultipliers, they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module (DOM) design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitized using ultra-low-power 14-bit ADCs with a sampling frequency of 250-MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200pe within 10ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in DAQ system

    Dark Matter Neutrino Scattering in the Galactic Centre with IceCube

    Get PDF
    While there is evidence for the existence of dark matter, its properties have yet to be discovered. Simultaneously, the nature of high-energy astrophysical neutrinos detected by IceCube remains unresolved. If dark matter and neutrinos are coupled to each other, they may exhibit a non-zero elastic scattering cross section. Such an interaction between an isotropic extragalactic neutrino flux and dark matter would be concentrated in the Galactic Centre, where the dark matter column density is greatest. This scattering would attenuate the flux of high-energy neutrinos, which could be observed in IceCube. Using the seven-year Medium Energy Starting Events sample, we perform an unbinned likelihood analysis, searching for a signal based on a possible DM-neutrino interaction scenario. We search for a suppression of the high-energy astrophysical neutrino flux in the direction of the Galactic Centre, and compare these constraints to complementary low-energy information from large scale structure surveys and the cosmic microwave background

    Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory provides the opportunity to perform unique measurements of cosmic-ray air showers with its combination of a surface array and a deep detector. Electromagnetic particles and low-energy muons (∼GeV) are detected by IceTop, while a bundle of high-energy muons (>~400 GeV) can be measured in coincidence in IceCube. Predictions of air-shower observables based on simulations show a strong dependence on the choice of the high-energy hadronic interaction model. By reconstructing different composition-dependent observables, one can provide strong tests of hadronic interaction models, as these measurements should be consistent with one another. In this work, we present an analysis of air-shower data between 2.5 and 80 PeV, comparing the composition interpretation of measurements of the surface muon density, the slope of the IceTop lateral distribution function, and the energy loss of the muon bundle, using the models Sibyll 2.1, QGSJet-II.04 and EPOS-LHC. We observe inconsistencies in all models under consideration, suggesting they do not give an adequate description of experimental data. The results furthermore imply a significant uncertainty in the determination of the cosmic-ray mass composition through indirect measurements

    Indirect search for dark matter in the Galactic Centre with IceCube

    Get PDF
    Even though there are strong astrophysical and cosmological indications to support the existence of dark matter, its exact nature remains unknown. We expect dark matter to produce standard model particles when annihilating or decaying, assuming that it is composed of Weakly Interacting Massive Particles (WIMPs). These standard model particles could in turn yield neutrinos that can be detected by the IceCube neutrino telescope. The Milky Way is expected to be permeated by a dark matter halo with an increased density towards its centre. This halo is expected to yield the strongest dark matter annihilation signal at Earth coming from any celestial object, making it an ideal target for indirect searches. In this contribution, we present the sensitivities of an indirect search for dark matter in the Galactic Centre using IceCube data. This low energy dark matter search allows us to cover dark matter masses ranging from 5 GeV to 1 TeV. The sensitivities obtained for this analysis show considerable improvements over previous IceCube results in the considered energy range

    New Flux Limits in the Low Relativistic Regime for Magnetic Monopoles at IceCube

    Get PDF
    Magnetic monopoles are hypothetical particles that carry magnetic charge. Depending on their velocity, different light production mechanisms exist to facilitate detection. In this work, a previously unused light production mechanism, luminescence of ice, is introduced. This light production mechanism is nearly independent of the velocity of the incident magnetic monopole and becomes the only viable light production mechanism in the low relativistic regime (0.1-0.55c). An analysis in the low relativistic regime searching for magnetic monopoles in seven years of IceCube data is presented. While no magnetic monopole detection can be claimed, a new flux limit in the low relativistic regime is presented, superseding the previous best flux limit by 2 orders of magnitude

    Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube

    Get PDF
    The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity. In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube
    corecore